4.3 Article

Punctuated sand transport in the lowermost Mississippi River

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JF002026

关键词

-

资金

  1. National Science Foundation via the National Center for Earth-surface Dynamics [EAR-0120914]

向作者/读者索取更多资源

[1] Measurements of sand flux and water flow in the Mississippi River are presented for a portion of the system 35-50 km upstream from the head of its subaerial delta. These data are used to provide insight into how nonuniform flow conditions, present in the lower reaches of large alluvial rivers, affect the timing and magnitude of sand transport near the river outlet. Field surveys during both low and high water discharge include (1) sequential digital bathymetric maps defining mobile river bottom topography which were used to estimate bed material flux, (2) multiple water velocity profiles, and (3) multiple suspended sediment profiles collected using a point-integrated sampler. These data show that total sand transport increases by two orders of magnitude over the measured range in water discharge (11,300 to 38,400 m(3) s(-1)). During low water discharge no sand is measured in suspension, and sand discharge via bed form migration is minimal. During high water discharge 54% of the sand discharge is measured in suspension while 46% of the sand discharge is part of bed form migration. The component of boundary shear stress associated with moving this sediment is estimated using a set of established sediment transport algorithms, and values for the total boundary shear stress are predicted by fitting logarithmic velocity functions to the measured profiles. The estimates of boundary shear stress, using measurements of suspended sand transport, bed form transport, and downstream oriented velocity profiles are internally consistent; moreover, the analyses show that boundary shear stress increases by nearly 10-fold over the measured water discharge range. We show how this increase in shear stress is consistent with backwater flow arising where the river approaches its outlet. The hydrodynamic properties of backwater flow affect the timing and magnitude of sand flux and produce punctuated sand transport through the lowermost Mississippi River. Our field data are used to evaluate the influence of this sand transport style on development of the mixed bedrock alluvial channel for the lowermost Mississippi River.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据