4.3 Article

Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JD016451

关键词

-

资金

  1. NASA Energy and Water Cycle Study (NEWS) [NNX07AW05G]
  2. NASA [NNX10AI05G]
  3. DOE Office of Science, Office of Biological and Environmental Research [DE-AI02-07ER64546]
  4. NASA [NNX10AI05G, 131937] Funding Source: Federal RePORTER

向作者/读者索取更多资源

A new hybrid classification algorithm to objectively identify Deep Convective Systems (DCSs) in radar and satellite observations has been developed. This algorithm can classify the convective cores (CC), stratiform rain (SR) area and nonprecipitating anvil cloud (AC) from the identified DCSs through an integrative analysis of ground-based scanning radar and geostationary satellite data over the Southern Great Plains. In developing the algorithm, AC is delineated into transitional, thick, and thin components. While there are distinct physical/dynamical differences among these subcategories, their top-of-atmosphere (TOA) radiative fluxes are not significantly different. Therefore, these anvil subcategories are grouped as total anvil, and the radiative impact of each DCS component on the TOA radiation budget is quantitatively estimated. We found that more DCSs occurred during late afternoon, producing peak AC fraction right after sunset. AC covers 3 times the area of SR and almost an order of magnitude larger than CC. The average outgoing longwave (LW) irradiances are almost identical for CC and SR, while slightly higher for AC. Compared to the clear-sky average, the reflected shortwave (SW) fluxes for the three DCS components are greater by a factor of 2-3 and create a strong cooling effect at TOA. The calculated SW and LW cloud radiative forcing (CRF) of AC contribute up to 31% of total NET CRF, while CC and SR contribute only 4 and 11%, respectively. The hybrid classification further lays the groundwork for studying the life cycle of DCS and improvements in geostationary satellite IR-based precipitation retrievals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据