4.3 Article

Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JD013680

关键词

-

资金

  1. National Aeronautics and Space Administration

向作者/读者索取更多资源

Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation-based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505-station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface-based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high-resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据