4.3 Article

Excitation of airwaves caused by bubble bursting in a cylindrical conduit: Experiments and a model

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JB006828

关键词

-

资金

  1. JSPS [19740281]
  2. Grants-in-Aid for Scientific Research [19740281, 21740326, 22109505] Funding Source: KAKEN

向作者/读者索取更多资源

Strombolian eruptions are considered to be a consequence of the bursting of a large bubble. In order to understand the relation between the style of bubble bursting and the resulting airwave, we perform experiments of bubble bursting at the top of the surface of viscous liquid contained in an acrylic pipe which acts as an air column and observe it visually and acoustically. We find that when the liquid viscosity is less than 1 Pa s, the bubble vibrates before bursting. The major source of the airwave during the sequence of the bubble bursting is the bubble vibration. On the other hand, when the liquid viscosity is greater than 1 Pa s, the bubble does not vibrate. During bubble bursting, an aperture appears on the bubble film. The aperture growth first accelerates and later decelerates before finally stopping. The major source of the airwave is the aperture growth. We calculate a synthetic waveform of the airwave generated by the aperture growth which explains the experimentally observed airwave well. When the frequency of the airwave generated by the aperture growth matches the eigenfrequency of the air column, resonance occurs. Applying this model to the Strombolian eruption, the characteristic low frequency (<20 Hz) is explained if the velocity of the aperture growth is several meters per second. The model also explains the asymmetrical initial rise of the airwave observed in the Strombolian eruptions as a result of the accelerating growth of the aperture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据