4.7 Article

In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite

期刊

APPLIED CLAY SCIENCE
卷 105, 期 -, 页码 200-206

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.clay.2014.12.031

关键词

Stabilization remediation; Bentonite; Heavy metals; Biochemical characteristics; Soil enzymes; Microbial community

资金

  1. Special Fund for Agro-Scientific Research in the Public Interest [201203045]
  2. National Natural Science Foundation of China [21107056, 21177068, 41401362]

向作者/读者索取更多资源

A pot trial was conducted to evaluate the effectiveness of bentonite in immobilizing Cd and Pb in soils using a set of parameters such as biochemical and physiological characteristics, metal fractions, plant growth and heavy metal concentrations, and soil enzyme activities and microbial community. Results showed that applying bentonite to soil increased activities of superoxide dismutase (SOD) in roots and peroxidase (POD) in leaves and soluble protein (SP) contents in roots of rice seedling by 2.19-2.46,0.18-0.34, and 0.06-2.20 times, but decreased malondialdehyde (MDA) contents in leaves and roots by up to 74.1% and 62.1%, respectively, as compared with the control. The additions of bentonite reduced the exchangeable fraction of Cd by 11.1%-42.5% and that of Pb by 20.3%-49.3%, most of which was converted into unavailable forms, resulting in 3.0%-54.3% and 6.7%-10.0% increases in residual portions, respectively. Treatments with bentonite inhibited Cd and Pb translocation from soil to the aerial parts of Oryza sativa L Compared with the control, bentonite applications reduced concentrations of Cd and Pb in the roots by 9.4%-3.13% and 5.1%-26.7%, and by 17.4%-44.3% and 3.7%-7.8% in the shoots, respectively. The decreased catalase and increased values of invertase and urease activities and bacteria, fungi, and actinomycete population in the soil implied certain metabolic recovery and soil quality improvements by bentonite additions. These results indicate that bentonite has the potential to reduce heavy metal bioavailability in paddy soils. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据