4.3 Article

Relative intensities of middle atmosphere waves

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008JD010662

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, Bonn)
  2. German Climate Computing Centre (DKRZ, Hamburg)
  3. NASA TIMED Program [NNX07AB74G]

向作者/读者索取更多资源

Climatologies of gravity waves, quasi-stationary planetary waves, and tides are compared in the upper stratosphere, mesosphere, and lower thermosphere. Temperature standard deviations from zonal means are used as proxies for wave activity. The sum of the waves is compared to directly measured total temperature fluctuations. The resulting difference is used as a proxy for traveling planetary waves. A preliminary climatology for these waves is proposed. A ranking of the four wave types in terms of their impact on the total wave state of the atmosphere is achieved, which is dependent on altitude and latitude. At extratropical latitudes, gravity waves mostly play a major role. Traveling planetary waves are found to play a secondary role. Quasi-stationary planetary waves and tides yield a lesser contribution there. Vertical profiles of total temperature fluctuations show a sharp vertical gradient change(kink or bend) in the mesosphere. This is interpreted in terms of a change of wave damping, and the concept of a wave turbopause is suggested. The altitude of this wave turbopause is found to be mostly determined by the relative intensities of gravity waves and planetary waves. The turbopause is further analyzed, including earlier mass spectrometer data. It is found that the wave turbopause and the mass spectrometer turbopause occur rather close together. The turbopause forms a layer about 8 km thick, and the data suggest an additional 3 km mixing layer on top.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据