4.3 Review

Evidence of long-term weakness on seismogenic faults in western North America from dynamic modeling

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JB005201

关键词

-

资金

  1. National Science Foundation
  2. NASA [EAR-0735156]
  3. NSF-EAR [0538437, 0545606]
  4. Directorate For Geosciences
  5. Division Of Earth Sciences [0545606] Funding Source: National Science Foundation
  6. Directorate For Geosciences
  7. Division Of Earth Sciences [0538437] Funding Source: National Science Foundation

向作者/读者索取更多资源

We investigate the long-term strength of faults within the plate boundary zone of western North America by quantifying the depth-integrated deviatoric stress field acting within the seismogenic portion of the crust. Forcings in the depth-integrated force balance equations are the horizontal gradients in gravitational potential energy per unit area (GPE). Seismic velocity data define the densities we use to determine GPE. We also solve for stress field boundary conditions that, when added to the contribution from GPE differences, provides a best fit to stress indicators. We estimate that the long-term depth-integrated total stress differences within the approximately 20 km thick seismogenic layer are of the order of 0.1-1.4 X 10(12) N m(-1). Using these stress differences as a proxy for depth integrals of fault strength within the actively deforming regions, we infer that the long-term values of coefficients of friction on faults within the Basin and Range of Nevada and Utah, and most of California, are 0.1-0.2 under long-term hydrostatic pore pressure conditions. We test the sensitivity of these results by considering a range of maximum depths of integration. We show that for depths of integration in excess of 20 km below sea level, there is diminishing contribution to the depth-integrated stress differences, and by proxy depth-integrated fault strength. This is consistent with a brittle-ductile transition in the plate boundary zone at depths less than 20 km below sea level, and with a weaker lower crust.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据