4.3 Article

Mesoscale vegetation-atmosphere feedbacks in Amazonia

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JD012001

关键词

-

资金

  1. Div Atmospheric & Geospace Sciences
  2. Directorate For Geosciences [0836756] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper investigates vegetation-climate interactions in disturbed rain forests of Amazonia. The scientific objective of this paper is twofold. The first goal is to reconcile the discrepancy between the decrease in precipitation predicted by general circulation models and the observed increase in precipitation due to deforestation in Rondonia. Numerical experiments with the Regional Atmospheric Modeling System (RAMS) show that sharp gradients in land cover due to fishbone deforestation trigger organized mesoscale circulations, leading to more clouds and rain over the deforested patches. The second goal is to develop and implement a modeling framework to identify and explore the fundamental pathways involved in deforestation-climate feedback over seasonal timescales. For this purpose, RAMS model outputs are combined with tower observations to develop a synthetic meteorological data set representing the impacts of deforestation on local hydrometeorology. A vegetation model forced by these data shows that extra rain promotes plant growth in the deforested patches during the water-limited dry season. This phenomenon constitutes a seasonal-scale negative feedback'' because accelerated vegetation recovery compensates for the effects of deforestation. This paper suggests that the regional climate observation infrastructure must be upgraded to resolve mesoscale feedbacks to accurately estimate the impact of deforestation in Amazonia. Moreover, these findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据