4.3 Article

Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JD009735

关键词

-

资金

  1. Electric Power Research Institute (EPRI)
  2. EPA STAR program [RD-83108101, R832162, R833748]
  3. EPA [R832162, 909256, 909018, R833748] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Organic aerosols (OA) are a highly dynamic system dominated by both variable gas particle partitioning and chemical evolution; however, these phenomena are poorly represented in current air quality models. The chemical transport model Comprehensive Air-Quality Model with extensions dealing with particulate matter (PMCAMx) was extended to investigate the effects of partitioning and photochemical aging of primary emissions on OA concentrations in the eastern United States during July 2001 and January 2002. In both the summer and the winter, much of the traditionally defined primary OA (POA) emissions evaporate, creating a large pool of low-volatility organic vapors. During the summertime, photochemical aging of these vapors creates substantial oxygenated OA that is regionally distributed. Little production of oxygenated OA is predicted in the winter because oxidant levels are low. OA formed from the oxidation of low-volatility vapors is most important in and around urban areas located in the northeast and midwest. In rural locations and throughout the southeast, traditional secondary OA (SOA) formed from biogenic precursors is predicted to be the dominant class of oxidized OA. PMCAMx can only reproduce the large fractional contributions of oxidized OA observed in the atmosphere if some of the POA in the model evaporates. Sensitivity analysis illustrates that the volatility distribution of the existing POA emissions and the amount of intermediate volatility compounds not accounted for in current inventories are key uncertainties. At an upper bound, better accounting for emissions of low-volatility organics has the potential to increase summertime OA concentrations in northeastern and midwestern cities by as much as 50%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据