4.3 Article

Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JD009433

关键词

-

向作者/读者索取更多资源

[1] Estimates of global mean direct climate forcing by absorbing aerosols located above boundary layer clouds are large, uncertain, and almost entirely unconstrained by observations. Spaceborne lidar offers a new opportunity for global constraints. Here we examine techniques for using liquid water clouds as lidar targets, allowing aerosol optical depth and Angstrom exponent to be deduced directly from aerosol effects on light transmission. Two such techniques are examined using data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The first is a previously reported method based on measurements of cloud depolarization ratio (DR) at 532-nm wavelength. The second is a new method using measurements of cloud color ratio (CR), which is the ratio of the signal from the cloud at 1064 nm to that at 532 nm. Optical depth retrievals from these two methods compare favorably over the eastern tropical Atlantic Ocean during August 2006, when biomass burning aerosols are frequently advected over marine stratiform clouds. The CR technique is mainly sensitive to fine-mode aerosols and essentially insensitive to clouds and coarse-mode dust. Because anthropogenic aerosol is predominantly found in the fine mode, the CR technique can be used to help identify situations where anthropogenic cloudy-sky direct radiative forcing is occurring. We demonstrate this capability using 6 months data over the eastern tropical Atlantic Ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据