4.3 Article

Springtime transitions of NO2, CO, and O3 over North America: Model evaluation and analysis

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JD009632

关键词

-

资金

  1. NASA Atmospheric Chemistry Modeling and Analysis Program
  2. National Science Foundation Atmospheric Chemistry Program

向作者/读者索取更多资源

Surface observations from AIRNow and Southeastern Aerosol Research and Characterization Study networks, aircraft observations from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft program, ozonesondes, and remote sensing measurements from Global Ozone Mapping Experiment, Total Ozone Mapping Spectrometer (TOMS), and Stratospheric Aerosol and Gas Experiment (SAGE) II for February-May 2000 over North America are used to characterize the springtime transitions of O-3 and its precursors. These measurements provide a comprehensive data set to evaluate the performance of the 3-D Regional Chemical Transport Model (REAM). The model is then applied to analyze the key factors affecting the springtime transitions of trace gas concentrations and export. The global GEOS-CHEM model is used to provide chemical initial and boundary conditions. Generally, the model results are in good agreement with the observations in the troposphere except for a low bias of upper tropospheric O-3; the bias decreases toward the summer and lower latitudes. The rate of observed surface O-3 increase in spring is simulated well by REAM. It is overestimated by GEOS-CHEM over the eastern United States. A key factor driving the model difference is daytime mixing depth. A shallow boundary layer in REAM leads to more efficient removal of radicals and hence slower activation of photochemistry in spring, when the primary radical source is relatively small. Comparison of top-down estimates of fossil fuel NOx emissions between REAM and GEOS-CHEM shows model dependence. The associated uncertainty is up to 20% on a monthly basis. Averaging over a season reduces this uncertainty. While tropospheric column NO2 decreases over the continent, it increases over the western North Atlantic due to lightning NOx production. Consequently, the REAM model simulates significant increases of tropospheric O-3 over the region as indicated by column data derived from TOMS-SAGE II. Lightning impact is also evident in model-simulated NOx exports.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据