4.3 Article

Near-surface diagnostics of dripping or delaminating lithosphere

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JB005123

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

In various geological regions, it has been postulated that the mantle lithosphere has been thinned or completely removed. Two of the primary removal mechanisms that have been put forward include: (1) delamination, a wholesale peeling away of a coherent block of the mantle lithosphere, and (2) lithospheric dripping,'' viscous Rayleigh-Taylor instability of the mantle lithosphere. Using computational models, we investigate several near-surface observables to determine if these may be diagnostic of either (often ambiguous) removal mechanism. Surface topography associated with delamination has a broad region of uplift above the lithospheric gap and a localized and mobile zone of subsidence at the delaminating hinge. With dripping lithosphere, the topographic expression is symmetric and fixed above the downwelling. Delamination of mantle lithosphere is more efficient than dripping for thermal heating of the crust; the onset is more rapid and the elevated temperatures persist longer. The resultant crustal P-T-t paths show modest pressure variations and high temperature increases with large-scale delamination or dripping. Delamination also causes contraction directly above the (migrating) hinge and distal extension. Dripping lithosphere induces superimposed contraction and extension above and symmetric about the viscous instability. For all the observables, if only a portion of the mantle lithosphere is removed by viscous instability (delamination inherently removes all of the mantle lithosphere), the differences between the two removal mechanisms are even more pronounced. With only partial removal of the mantle lithosphere, uppermost mantle lithosphere remains well coupled to the crust, leading to lower surface temperature variations and broad zones of crustal deformation/thickening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据