4.3 Article

Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JD008574

关键词

-

向作者/读者索取更多资源

Strength and structure of the Earth's magnetic field control the deflection of energetic charged particles of solar and cosmic origin. Therefore variations of the geomagnetic field occurring on geological timescales affect the penetration of charged particles into the atmosphere. During solar proton events ( SPEs) the flux of high-energy protons from the Sun is markedly increased. In order to investigate the impact of SPEs on the middle atmospheric ozone on longer timescales, two-dimensional atmospheric chemistry and transport simulations have been performed using simulated time series of SPEs covering 200 years. Monte Carlo calculations were used to obtain ionization rates, which were then applied to the atmosphere under the consideration of different shielding properties of the geomagnetic field. The present-day magnetic field configuration and four other scenarios were analyzed. For the first time, field configurations representing possible realistic situations during reversals have been investigated with respect to SPE-caused ozone losses. With decreasing magnetic field strength the impacts on the ozone are found to significantly increase especially in the Southern Hemisphere, and subsequently, the flux of harmful ultraviolet radiation increases at the Earth's surface. The ozone destructions are most pronounced in the polar regions, and for some field configurations they exceed the values of ozone hole situations after large SPEs. In contrast to ozone holes the depletions due to SPEs are not restricted to winter and spring times but persist into polar summer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据