4.6 Article

Synergistic application of geometric and radiometric features of LiDAR data for urban land cover mapping

期刊

OPTICS EXPRESS
卷 23, 期 11, 页码 13761-13775

出版社

Optica Publishing Group
DOI: 10.1364/OE.23.013761

关键词

-

类别

资金

  1. Hundred Talents Program of Chinese Academy of Sciences
  2. National Natural Science Foundation of China [41471294]
  3. Major State Basic Research Development Program of China [2013CB733405]

向作者/读者索取更多资源

Urban land cover map is essential for urban planning, environmental studies and management. This paper aims to demonstrate the potential of geometric and radiometric features derived from LiDAR waveform and point cloud data in urban land cover mapping with both parametric and non-parametric classification algorithms. Small footprint LiDAR waveform data acquired by RIEGL LMS-Q560 in Zhangye city, China is used in this study. A LiDAR processing chain is applied to perform waveform decomposition, range determination and radiometric characterization. With the synergic utilization of geometric and radiometric features derived from LiDAR data, urban land cover classification is then conducted using the Maximum Likelihood Classification (MLC), Support Vector Machines (SVM) and random forest algorithms. The results suggest that the random forest classifier achieved the most accurate result with overall classification accuracy of 91.82% and the kappa coefficient of 0.88. The overall accuracies of MLC and SVM are 84.02, and 88.48, respectively. The study suggest that the synergic utilization of geometric and radiometric features derived from LiDAR data can be efficiently used for urban land cover mapping, the non-parametric random forest classifier is a promising approach for the various features with different physical meanings. (C) 2015 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据