4.7 Article

GOCE gravitational gradients along the orbit

期刊

JOURNAL OF GEODESY
卷 85, 期 11, 页码 791-805

出版社

SPRINGER
DOI: 10.1007/s00190-011-0464-0

关键词

GOCE; Gravitational gradients; External calibration; Tensor rotation

资金

  1. German Department for Education and Research (Bundesministerium fur Bildung und Forschung)

向作者/读者索取更多资源

GOCE is ESA's gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth's gravitational potential. The goal is to determine the Earth's mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V-XX, V-YY, V-ZZ and V-XZ are much more accurate than V-XY and V-YZ, and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10(-3) level. Furthermore, we found that the error of V-XX and V-YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V-ZZ error is a factor of 2-3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2-35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据