4.8 Article

In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: Significant contribution of water vapor

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 179, 期 -, 页码 69-77

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2015.05.020

关键词

Au catalyst; Air plasma; In-situ regeneration; Water vapor; CO oxidation

资金

  1. National Natural Science Foundation of China [11175036, U1201231]
  2. Fundamental Research Funds for the Central Universities [DUT14RC(3)012]

向作者/读者索取更多资源

In-situ regeneration of deactivated Au nanocatalysts during CO oxidation, was conducted effectively by pure oxygen plasma, but poisoned by dry air plasma in our previous work (Appl. Catal. B 2012, 119-120, 49-55). With extension of previous study, a simple and effective technique of atmospheric-pressure cold plasma of humid air is explored for in-situ regeneration of Au nanocatalysts. In comparison with ineffective regeneration by dry plasma, humid plasma using synthetic air (20% O-2 balance N-2) as discharge gas surprisingly exhibited effective regeneration performance over Au catalyst due to significant contribution of water vapor. After plasma regeneration for 5 min, the regeneration degree of Au catalysts significantly increased up to 98% under humid plasma in presence of 2.77 vol.% water, while decreased down to negative 29% under dry plasma. To disclose the mechanism of water vapor contribution to greatly improved regeneration degree, the characterizations of regenerated catalysts, and the analyses of electric discharge characteristics and gaseous products during the plasma regeneration were conducted. The significant contribution of water vapor embodies in that it speeds up the decomposition of carbonate species and simultaneously inhibits the formation of poisoning species of nitrogen oxides. Furthermore, normal air instead of synthetic air in humid plasma regeneration was implemented on the evaluations of the deactivated Au catalysts after a long-term reaction and during ten deactivation-regeneration cycles, which ensured the feasibility and reliability of in-situ plasma regeneration of Au nanocatalysts as a simple, effective and promising technique. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据