4.5 Article

pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells

期刊

JOURNAL OF GENE MEDICINE
卷 12, 期 4, 页码 323-332

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/jgm.1441

关键词

biosafety; DNA delivery; electrotransfer; gene therapy; nonviral; plasmid vector

资金

  1. European Commission [512034]
  2. 'Fonds de la Recherche Scientifique Medicale' (Belgium)

向作者/读者索取更多资源

Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic-free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid-borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine awcotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t-RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC-encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC-encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high-level transgene expression in several tissues. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据