4.5 Article

Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures

期刊

JOURNAL OF GENE MEDICINE
卷 11, 期 10, 页码 868-876

出版社

WILEY
DOI: 10.1002/jgm.1370

关键词

gene therapy; HEK293; lentiviral vectors; scalable production; suspension culture

向作者/读者索取更多资源

Background Lentiviral vectors (LV) offer several advantages over other gene delivery vectors. Their potential for the integration and long-term expression of therapeutic genes renders them an interesting tool for gene and cell therapy interventions. However, large-scale LV production remains an important challenge for the translation of LV-based therapeutic strategies to the clinic. The development of robust processes for mass production of LV is needed. Methods A suspension-grown HEK293 cell line was exploited for the production of green fluorescent protein-expressing LV by transient polyethylenimine (PEI)-based transfection with LV-encoding plasmid constructs. Using third-generation packaging plasmids (Gag/Pol, Rev), a vesicular stomatitis virus G envelope and a self-inactivating transfer vector, we employed strategies to increase volumetric and specific productivity. Functional LV titers were determined using a flow cytometry-based gene transfer assay. Results A combination of the most promising conditions (increase in cell density, medium selection, reduction of PEI-DNA complexes per cell addition, of sodium butyrate) resulted in significantly increased LV titers of more than 150-fold compared to non-optimized small-scale conditions, reaching infectious titers of approximately 10(8) transducing units/ml. These conditions are readily scalable and were validated in 3-liter scale perfusion cultures. Conclusions Our process produces LV in suspension cultures and is consequently easily scalable, industrially viable and generated more than 10(11) total functional LV particles in a single bioreactor run. This process will allow the production of LV by transient transfection in sufficiently large quantities for phase I clinical trials at the 10-20-liter bioreactor scale. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据