4.5 Article

Development of adenovirus immobilization strategies for in situ gene therapy

期刊

JOURNAL OF GENE MEDICINE
卷 10, 期 10, 页码 1102-1112

出版社

WILEY
DOI: 10.1002/jgm.1233

关键词

adenovirus; avidin/biotin; chitosan; gene delivery; surface modification; tissue engineering

资金

  1. AO Foundation [16-2004]

向作者/读者索取更多资源

Background Regenerative gene therapy using viral vectors enables transduced cells to express bioactive factors in vivo. Viral delivery with spatial control can enhance transduction efficiency and may limit systemic infection. Consequently, we tethered biotinylated adenovirus via interactions with avidin on chitosan surfaces to gain robust control for in situ transduction. Methods Avidin was either directly conjugated to chitosan (virus-biotin-avidin-material; VBAM) or indirectly clocked on biotinylated chitosan surfaces (virus-biotin-avidin-biotin-material; VBABM) to tether biotinylated adenovirus. Enzyme-linked immunosorbent assay (ELISA) and spectroscopic analysis were performed to demonstrate the binding profiles. Biotin-alkaline phosphatase and biotinylated adenovirus were used as different sized particles to evaluate binding efficiencies and were compared by the Sips isotherm adsorption method. Scanning electron microscopy (SEM) examination illustrated virus distribution, and the transduction efficiency was determined by in vitro cell transduction. Results ELISA and spectroscopic analysis both demonstrated that the VBAM system led to multilayer avidin formation on biomaterial surfaces, whereas VBABM formed a monolayer of avidin. Sips isotherm adsorption indicated that the VBAM method increased heterogeneity and steric hindrance of binding sites. By contrast, the VBABM method docked avidin on chitosan surfaces and orientated the binding sites to facilitate ligand binding. In addition, SFM images illustrated that the VBABM method led to more even viral distribution. In vitro cell infection experiments also demonstrated that the VBABM system enhanced virus immobilization and thus improved cell transduction efficiency over the VBAM system. Conclusions The VBABM strategy is a superior method for in situ transduction from biomaterials. This strategy could be adapted for use with a variety of biomaterials as well as vital vectors, and thus may be an alternative method for in vivo regenerative gene therapy. Copyright (C) 2008 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据