4.4 Article

Dynamic Effects of Free Chlorine Concentration, Organic Load, and Exposure Time on the Inactivation of Salmonella, Escherichia coli O157:H7, and Non-O157 Shiga Toxin-Producing E. coli

期刊

JOURNAL OF FOOD PROTECTION
卷 76, 期 3, 页码 386-393

出版社

INT ASSOC FOOD PROTECTION
DOI: 10.4315/0362-028X.JFP-12-320

关键词

-

资金

  1. USDA, National Institutes of Food and Agriculture, Specialty Crops Research Initiative [2010-51181-21230]

向作者/读者索取更多资源

This study evaluated the dynamic effects of free-chlorine (FC) concentration, contact time, and organic load on the inactivation of Salmonella, Escherichia coli O157:H7, and non-O157 Shiga toxin-producing E. coli (STEC) in suspension. Bacterial cells from four strains each of Salmonella, E. coli O157: H7, and non-O157 STEC were inoculated separately or as a multistrain cocktail into solutions with varying FC concentrations. Lettuce or tomato extract was used to simulate the organic matter present during commercial fresh and fresh-cut produce wash operations. After exposure to FC for various lengths of time, the bacterial survival and water-quality changes were determined. In the absence of organic matter in a wash solution, pathogen inactivation is primarily a function of initial FC concentration (P < 0.0001), exposure time (P < 0.0001), and pathogen strains (P, 0.0001). In general, an over 4.5-log CFU/ml pathogen reduction was found after exposure to >0.5 mg/liter FC for over 30 s, or to >1.0 mg/liter FC for over 5 s. When the combination of FC concentration and contact time were less than or equal to the above conditions, survival of pathogens was strain dependant and ranked as: Salmonella > E. coli O157: H7. non-O157 STEC. When organic matter was present in the wash solution, pathogen inactivation efficacy was specifically dependent on the residual FC concentration, which directly relates to both the initial FC concentration and the organic load. Prevention of pathogen survival in chlorinated produce wash solutions can be achieved by maintaining sufficient FC concentration and reducing the accumulation of organic matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据