4.4 Article

Global Gene Expression of Listeria monocytogenes to Salt Stress

期刊

JOURNAL OF FOOD PROTECTION
卷 75, 期 5, 页码 906-912

出版社

INT ASSOC FOOD PROTECTION
DOI: 10.4315/0362-028X.JFP-11-282

关键词

-

资金

  1. USDA/ARS [58-6402-7-230]
  2. Mississippi Agriculture and Forestry Experiment Station

向作者/读者索取更多资源

Outbreaks of listeriosis caused by the ingestion of Listeria-contaminated ready-to-eat foods have been reported worldwide. Many ready-to-eat foods, such as deli meat products, contain high amounts of salt, which can disrupt the maintenance of osmotic balance within bacterial cells. To understand how Listeria monocytogenes adapts to salt stress, we examined the growth and global gene expression profiles of L. monocytogenes strain F2365 under salt stress using oligonucleotide probe-based DNA array and quantitative real-time PCR (qRT-PCR) analyses. The growth of L. monocytogenes in brain heart infusion (BHI) medium with various concentrations of NaCl (2.5, 5, and 10%) was significantly inhibited (P < 0.01) when compared with growth in BHI with no NaCl supplementation. Microarray data indicated that growth in BHI medium with 1.2% NaCl upregulated 4 genes and down-regulated 24 genes in L. monocyto genes, which was confirmed by qRT-PCR. The transcript levels of genes involved in the uptake of glycine betaine/L-proline were increased, whereas genes associated with a putative phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), metabolic enzymes, and virulence factor were down-regulated. Specifically, the expression levels of PTS transport genes were shown to be dependent on NaCl concentration. To further examine whether the down-regulation of PTS genes is related to decreased cell growth, the transcript levels of genes encoding components of enzyme II, involved in the uptake of various sugars used as the primary carbon source in bacteria, were also measured using qRT-PCR. Our results suggest that the decreased transcript levels of PTS genes may be caused by salt stress or reduced cell growth through salt stress. Here, we report global transcriptional profiles of L. monocyto genes in response to salt stress, contributing to an improved understanding of osmotolerance in this bacterium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据