4.4 Article

Coconut kernel protein in diet protects the heart by beneficially modulating endothelial nitric oxide synthase, tumor necrosis factor-alpha, and nuclear factor-kappaB expressions in experimental myocardial infarction

期刊

JOURNAL OF FOOD AND DRUG ANALYSIS
卷 21, 期 3, 页码 325-331

出版社

FOOD & DRUG ADMINSTRATION
DOI: 10.1016/j.jfda.2013.07.012

关键词

Antioxidant enzymes; Coconut kernel protein; Isoproterenol; L-Arginine; Myocardial infarction

向作者/读者索取更多资源

Previous studies conducted in our laboratory revealed that coconut kernel protein has a significant cardioprotective effect on isoproterenol-induced myocardial infarction in rats. In the present study, we explored the possible protective mechanism of coconut kernel protein during acute myocardial infarction. Coconut kernel protein (50 mg/100 g) was administered to Sprague-Dawley rats orally for 45 days. Isoproterenol (20 mg/100 g) was injected subcutaneously at an interval of 24 hours twice to induce myocardial infarction. Myocardial infarction was confirmed by the abnormal activities of cardiac marker enzymes in serum. Activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase were decreased ( p < 0.05) in the heart of isoproterenol-treated rats, whereas pretreatment with coconut kernel protein increased ( p < 0.05) these activities. An improved antioxidant status in these rats was further confirmed by the increased level of reduced glutathione and decreased level of lipid peroxidation products. Nitric oxide synthase (NOS) activity in the heart and nitrite level in blood were increased ( p < 0.05) in coconut kernel protein-treated rats administered with isoproterenol compared to isoproterenol control rats. Coconut protein pretreatment upregulated the expression of endothelial nitric oxide synthase (eNOS), whereas expressions of nuclear factor-kappaB (NF-kappa B) and tumor necrosis factor-alpha (TNF-alpha) were down-regulated in isoproterenol-treated rats. These findings suggest that the protective effects of coconut kernel protein may be mediated in part through upregulation of nitric oxide production, antioxidant mechanisms, and its ability to inhibit TNF-alpha and NF-kappa B activation. Copyright 2013, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据