4.4 Article

Mixing Evaluation of a Passive Scaled-Up Serpentine Micromixer With Slanted Grooves

出版社

ASME
DOI: 10.1115/1.4024146

关键词

Dean vortex; flow visualization; induced fluorescence; micromixer; numerical simulation; rotation; serpentine; slanted grooves

向作者/读者索取更多资源

A novel, passive, scaled-up micromixer based on fluid rotation is proposed and evaluated experimentally and numerically over Reynolds numbers ranging from 0.5 to 100. Flow visualization is employed to qualitatively assess flow patterns, while induced fluorescence is used to quantify species distribution at five locations along the channel length. Two individual fluids are supplied to the test section via a Y-inlet. The fluid enters a meandering channel with four semicircular portions, each of which is lined with nine slanted grooves at the bottom surface. The main mixing channel is 3 mm wide and 0.75 mm deep, with a total length of 155.8 mm. Numerical simulations confirm rotation at all investigated Reynolds numbers, and the strength of rotation increases with increasing Reynolds number. Grooves are employed to promote helical flow, while the serpentine channel structure results in the formation of Dean vortices at Re >= 50 (Dean number >= 18.25), where momentum has a more significant effect. A decreasing-increasing trend in the degree of mixing was noted, with an inflection point at Re = 5, marking the transition from diffusion dominance to advection dominance. The increase in interfacial surface area is credited with the improved mixing in the advection-dominant regime, while high residence time allowed for significant mass diffusion in the diffusion-dominant regime. Good mixing was achieved at both high and low Reynolds numbers, with a maximum mixing index of 0.90 at Re = 100.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据