4.4 Article

Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels

出版社

ASME
DOI: 10.1115/1.4000692

关键词

friction; hydrodynamics; Knudsen flow; microchannel flow; pipe flow; slip flow

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Microscale fluid dynamics has received intensive interest due to the emergence of micro-electro-mechanical systems (MEMS) technology. When the mean free path of the gas is comparable to the channel's characteristic dimension, the continuum assumption is no longer valid and a velocity slip may occur at the duct walls. Noncircular cross sections are common channel shapes that can be produced by microfabrication. The noncircular microchannels have extensive practical applications in MEMS. The paper deals with issues of hydrodynamic flow development. Slip flow in the entrance of circular and parallel plate microchannels is first considered by solving a linearized momentum equation. It is found that slip flow is less sensitive to analytical linearized approximations than continuum flow and the linearization method is an accurate approximation for slip flow. Also, it is found that the entrance friction factor Reynolds product is of finite value and dependent on the Kn and tangential momentum accommodation coefficient but independent of the cross-sectional geometry. Slip flow and continuum flow in the hydrodynamic entrance of noncircular microchannels has been examined and a model is proposed to predict the friction factor and Reynolds product f Re for developing slip flow and continuum flow in most noncircular microchannels. It is shown that the complete problem may be easily analyzed by combining the asymptotic results for short and long ducts. Through the selection of a characteristic length scale, the square root of cross-sectional area, the effect of duct shape has been minimized. The proposed model has an approximate accuracy of 10% for most common duct shapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据