4.5 Article

Simulation of parachute FSI using the front tracking method

期刊

JOURNAL OF FLUIDS AND STRUCTURES
卷 37, 期 -, 页码 100-119

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfluidstructs.2012.08.011

关键词

Front tracking; Spring model; Parachute inflation

资金

  1. US Army Research Office [W911NF0910306]

向作者/读者索取更多资源

We use the front tracking method on a spring system to model the dynamic evolution of parachute canopy and risers. The canopy surface and the riser string chord of a parachute are represented by a triangulated surface mesh with preset equilibrium length on each side of the simplices. The stretching and wrinkling of the canopy and its supporting string chords (risers) are modeled by the spring system. The spring constants of the canopy and the risers are chosen based on the analysis of Young's surface modulus for the canopy fabric and Young's string modulus of the string chord. Damping is added to dissipate the excessive spring internal energy. The current model does not have radial reinforcement cables and has not taken into account the canopy porosity. This mechanical structure is coupled with the incompressible Navier-Stokes solver through the Impulse Method. We analyzed the numerical stability of the spring system and used this computational module to simulate the flow pattern around a static parachute canopy and the dynamic evolution during the parachute inflation process. The numerical solutions have been compared with the available experimental data and there are good agreements in the terminal descent velocity and breathing frequency of the parachute. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据