4.7 Article

Freezing colloidal suspensions: periodic ice lenses and compaction

期刊

JOURNAL OF FLUID MECHANICS
卷 758, 期 -, 页码 786-808

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.500

关键词

phase change; solidification/melting; suspensions

资金

  1. Leverhulme Trust (Early Career Fellowship)
  2. Isaac Newton Trust, University of Cambridge

向作者/读者索取更多资源

Recent directional solidification experiments with aqueous suspensions of alumina particles (Anderson & Worster, Langmuir, vol. 28 (48), 2012, pp. 16512-16523) motivate a model for freezing colloidal suspensions that builds upon a theoretical framework developed by Rempel et al. (J. Fluid Mech., vol. 498, 2004, pp. 227-244) in the context of freezing soils. Ice segregates from the suspension at slow freezing rates into discrete horizontal layers of particle-free ice, known as ice lenses. A portion of the particles is trapped between ice lenses, while the remainder are pushed ahead, forming a layer of fully compacted particles separated from the bulk suspension by a sharp compaction front. By dynamically modelling the compaction front, the growth kinetics of the ice lenses are fully coupled to the viscous flow through the evolving compacted layer. We examine the periodic states that develop at fixed freezing rates in a constant, uniform temperature gradient, and compare the results against experimental observations. Congruent with the experiments, three periodic regimes are identified. At low freezing rates, a regular periodic sequence of ice lenses is obtained; predictions for the compacted layer thickness and ice-lens characteristics as a function of freezing rate are consistent with experiments. At intermediate freezing rates, multiple modes of periodic ice lenses occur with a significantly diminished compacted layer. When the cohesion between the compacted particles is sufficiently strong, a sequence of mode-doubling bifurcations lead to chaos, which may explain the disordered ice lenses observed experimentally. Finally, beyond a critical freezing rate, the regime for sustained ice-lens growth breaks down. This breakdown is consistent with the emergence of a distinct regime of ice segregation found experimentally, which exhibits a periodic, banded structure that is qualitatively distinct from ice lenses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据