4.7 Article

Drops and bubbles in wedges

期刊

JOURNAL OF FLUID MECHANICS
卷 748, 期 -, 页码 641-662

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.201

关键词

capillary flows; drops and bubbles; Hele-Shaw flows

资金

  1. Interuniversity Attraction Poles Programme - Belgian Science Policy Office [IAP 7/38 MicroMAST]

向作者/读者索取更多资源

We investigate experimentally the spontaneous motion of drops and bubbles confined between two plates forming a narrow wedge. Such discoidal objects migrate under the gradient in interfacial energy induced by the non-homogeneous confinement. The resulting capillary driving force is balanced by viscous resistance. The viscous friction on a drop bridging parallel plates is estimated by measuring its sliding velocity under gravity. The viscous forces are the sum of two contributions, from the bulk of the liquid and from contact lines, the relative strength of which depends on the drop size and velocity and the physical properties of the liquid. The balance of capillarity and viscosity quantitatively explains the dynamics of spontaneous migration of a drop in a wedge. Close the tip of the wedge, bulk dissipation dominates and the migrating velocity of drops is constant and independent of drop volume. The distance between the drop and the tip of the wedge is thus linear with time t, x(t) similar to t(0) -t, where t(0) is the time at which the drop reaches the tip of the wedge. Far away from the apex, contact lines dominate the friction, the motion is accelerated toward the tip of the wedge and velocities are higher for larger drops. In this regime, it is shown that t, x(t) similar to t(0) -t. The position and time of the crossover between the two dissipation regimes are used to write a dimensionless equation of motion. Plotted in rescaled variables, all experimental trajectories collapse to the prediction of our model. In contrast to drops, gas bubbles in a liquid-filled wedge behave as non-wetting objects. They thus escape the confinement of the wedge to reduce their surface area. The physical mechanisms involved are similar for drops and bubbles, so that the forces acting have the same mathematical structures in both cases, except for the sign of the capillary driving force and a numerical factor. We thus predict and show experimentally that the trajectories of drops and bubbles obey the same equation of motion, except for a change in the sign of t(0) - t.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据