4.7 Article

Motion of spheriod particles in shear flow with inertia

期刊

JOURNAL OF FLUID MECHANICS
卷 749, 期 -, 页码 145-166

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2014.224

关键词

computational methods; low-Reynolds-number flows; particle/fluid flows

资金

  1. NSF [CBET-0932510]
  2. Center for Pediatric Nanomedicine at Children's Healthcare of Atlanta

向作者/读者索取更多资源

In this article, we investigate the motion of a solid spheroid particle in a simple shear flow. Using a lattice Boltzmann method, we examine individual effects of fluid inertia and particle rotary inertia as well as their combination on the dynamics and trajectory of spheroid particles at low and moderate Reynolds numbers. The motion of a single spheroid is shown to be dependent on the particle Reynolds number, particle aspect ratio, particle initial orientation and the Stokes number. Spheroids with random initial orientations are found to drift to stable orbits influenced by fluid inertia and/or particle inertia. Specifically, prolate spheroids drift towards the tumbling mode of motion, whereas oblate spheroids drift to the rolling mode. The rotation period and the variation of angular velocity of tumbling spheroids decrease as Stokes number increases. With increasing Reynolds number, both the maximum and minimum values of angular velocity decrease, whereas the particle rotation period increases. We show that particle inertia does not affect the hydrodynamic torque on the particle. We also demonstrate that superposition can be used to estimate the combined effect of fluid inertia and particle inertia on the dynamics of spheroid particles at sufficiently low Reynolds numbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据