4.7 Article

The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids

期刊

JOURNAL OF FLUID MECHANICS
卷 714, 期 -, 页码 95-126

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2012.461

关键词

capillary flows; drops and bubbles; diffuse interface methods; interfacial flows (free surface)

资金

  1. Standard HPC Grant [std11-455]

向作者/读者索取更多资源

The Cahn-Hilliard model is increasingly often being used in combination with the incompressible Navier-Stokes equation to describe unsteady binary fluids in a variety of applications ranging from turbulent two-phase flows to microfluidics. The thickness of the interface between the two bulk fluids and the mobility are the main parameters of the model. For real fluids they are usually too small to be directly used in numerical simulations. Several authors proposed criteria for the proper choice of interface thickness and mobility in order to reach the so-called 'sharp-interface limit'. In this paper the problem is approached by a formal asymptotic expansion of the governing equations. It is shown that the mobility is an effective parameter to be chosen proportional to the square of the interface thickness. The theoretical results are confirmed by numerical simulations for two prototypal flows, namely capillary waves riding the interface and droplets coalescence. The numerical analysis of two different physical problems confirms the theoretical findings and establishes an optimal relationship between the effective parameters of the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据