4.7 Article

Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers

期刊

JOURNAL OF FLUID MECHANICS
卷 722, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2013.157

关键词

biological fluid dynamics; propulsion; swimming/flying

向作者/读者索取更多资源

We investigate the optimal morphologies for fast and efficient anguilliform swimmers at intermediate Reynolds numbers, by combining an evolution strategy with three-dimensional viscous vortex methods. We show that anguilliform swimmer shapes enable the trapping and subsequent acceleration of regions of fluid transported along the entire body by the midline travelling wave. A sensitivity analysis of the optimal morphological traits identifies that the width thickness in the anterior of the body and the height of the caudal fin are critical factors for both speed and efficiency. The fastest swimmer without a caudal fin, however, still retains 80% of its speed, showing that the entire body is used to generate thrust. The optimal shapes share several features with naturally occurring morphologies, but their overall appearances differ. This demonstrates that engineered swimmers can outperform biomimetic swimmers for the criteria considered here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据