4.7 Article

Fluid transport by individual microswimmers

期刊

JOURNAL OF FLUID MECHANICS
卷 726, 期 -, 页码 5-25

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2013.208

关键词

biological fluid dynamics; low-Reynolds-number flows; mixing

资金

  1. ERC

向作者/读者索取更多资源

We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer rho decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer-swimmer separations, however, the tracer displacement becomes positive and diverges as rho -> 0. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据