4.7 Article

Global modes and transient response of a cold supersonic jet

期刊

JOURNAL OF FLUID MECHANICS
卷 669, 期 -, 页码 225-241

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010005380

关键词

absolute/convective instability; jet noise; jets

向作者/读者索取更多资源

Global-mode analysis is applied to a cold, M = 2.5 laminar jet. Global modes of the non-parallel jet capture directly both near-field dynamics and far-field acoustics which, in this case, are coupled by Mach wave radiation. In addition to type (a) modes corresponding to Kelvin-Helmholtz instability, it is found that the jet also supports upstream-propagating type (b) modes which could not be resolved by previous analyses of the parabolized stability equations. The locally neutrally propagating part of a type (a) mode consists of the growth and decay of an aerodynamic wavepacket attached to the jet, coupled with a beam of acoustic radiation at a low angle to the jet downstream axis. Type (b) modes are shown to be related to the subsonic family of modes predicted by Tam & Hu (1989). Finally, significant transient growth is recovered by superposing damped, but non-normal, global modes, leading to a novel interpretation of jet noise production. The mechanism of optimal transient growth is identified with a propagating aerodynamic wavepacket which emits an acoustic wavepacket to the far field at an axial location consistent with the peaks of the locally neutrally propagating parts of type (a) modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据