4.7 Article

Effects of flexibility on the aerodynamic performance of flapping wings

期刊

JOURNAL OF FLUID MECHANICS
卷 689, 期 -, 页码 32-74

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2011.428

关键词

flow-structure interactions; propulsion; swimming/flying

资金

  1. Air Force Office of Scientific Research's Multidisciplinary University Research Initiative (MURI)
  2. Michigan/AFRL (Air Force Research Laboratory) Collaborative Center in Aeronautical Sciences (MACCAS)

向作者/读者索取更多资源

Effects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reynolds number regime of O(10(3) - 10(4)) and the reduced frequency of O(1), the added mass force, related to the acceleration of the wing, is important. Based on the order of magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-tip deformation parameter (gamma) is established. The parameter depends on the density ratio, St, k, natural and flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle design and performance analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据