4.7 Article

Stirring by squirmers

期刊

JOURNAL OF FLUID MECHANICS
卷 669, 期 -, 页码 167-177

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S002211201000563X

关键词

mixing; micro-organism dynamics

资金

  1. NSF [DMS-0507615, DMS-0806821]

向作者/读者索取更多资源

We analyse a simple 'Stokesian squirmer' model for the enhanced mixing due to swimming micro-organisms. The model is based on a calculation of Thiffeault & Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements due to inviscid swimmers are added to produce an effective diffusivity. Here we show that, for the viscous case, the swimmers cannot be assumed to swim an infinite distance, even though their total mass displacement is finite. Instead, the largest contributions to particle displacement, and hence to mixing, arise from random changes of direction of swimming and are dominated by the far-field stresslet term in our simple model. We validate the results by numerical simulation. We also calculate non-zero Reynolds number corrections to the effective diffusivity. Finally, we show that displacements due to randomly swimming squirmers exhibit probability distribution functions with exponential tails and a short-time superdiffusive regime, as found previously by several authors. In our case, the exponential tails are due to 'sticking' near the stagnation points on the squirmer's surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据