4.7 Article

On latency of multiple zonal jets in the oceans

期刊

JOURNAL OF FLUID MECHANICS
卷 686, 期 -, 页码 534-567

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2011.345

关键词

geostrophic turbulence; quasi-geostrophic flows; waves in rotating fluids

资金

  1. NSF [OCE 0725796, OCE 0845150, OCE 0842834]
  2. Royal Society
  3. Woods Hole Oceanographic Institution

向作者/读者索取更多资源

Most of the nearly zonal, multiple, alternating jets observed in the oceans are latent, that is, their amplitudes are weak relative to the ambient mesoscale eddies. Yet, relatively strong jets are often observed in dynamical simulations. To explore mechanisms controlling the degree of latency, we analyse solutions of an idealized, eddy-resolving and flat-bottom quasigeostrophic model, in which dynamically generated mesoscale eddies maintain and interact with a set of multiple zonal jets. We find that the degree of the latency is controlled primarily by the bottom friction: the larger the friction parameter, the more latent are the jets; and the degree of the latency is substantial for a realistic range of the oceanic bottom friction coefficient. This result not only provides a plausible explanation for the latency of the oceanic jets, but it may also be relevant to the prominent atmospheric multiple jets observed on giant gas planets, such as Jupiter. We hypothesize that these jets can be so strong because of the relative absence of the bottom friction. The mechanism controlling the latency in our solutions is understood in terms of the changes induced in the linear eigenmodes of the time-mean flow by varying the bottom friction coefficient; these changes, in turn, affect and modify the jets. Effects of large Reynolds numbers on the eddies, jets, and the latency are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据