4.7 Article

Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis

期刊

JOURNAL OF FLUID MECHANICS
卷 680, 期 -, 页码 31-66

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2011.132

关键词

micro-/nano-fluid dynamics; micro-organism dynamics; propulsion

资金

  1. NSF [CBET-0853379]

向作者/读者索取更多资源

Mitchell originally proposed that an asymmetric ion flux across an organism's membrane could generate electric fields that drive locomotion. Although this locomotion mechanism was later rejected for some species of bacteria, engineered Janus particles have been realized that can swim due to ion fluxes generated by asymmetric electrochemical reactions. Here we present governing equations, scaling analyses and numerical simulations that describe the motion of bimetallic rod-shaped motors in hydrogen peroxide solutions due to reaction-induced charge auto-electrophoresis. The coupled Poisson-Nernst-Planck-Stokes equations are numerically solved using Frumkin-corrected Butler-Volmer equations to represent electrochemical reactions at the rod surface. Our simulations show strong agreement with the scaling analysis and experiments. The analysis shows that electrokinetic locomotion results from electro-osmotic fluid slip around the nanomotor surface. The electroviscous flow is driven by electrical body forces which are generated from a coupling of a reaction-induced dipolar charge density distribution and the electric field it creates. The magnitude of the electroviscous velocity increases quadratically with the surface reaction rate for an uncharged motor, and linearly when the motor supports a finite surface charge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据