4.7 Article

Continual skipping on water

期刊

JOURNAL OF FLUID MECHANICS
卷 669, 期 -, 页码 328-353

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010005057

关键词

hydraulics; instability

资金

  1. National Science Foundation
  2. Office of Naval Research
  3. Killam Foundation
  4. Engineering and Physical Sciences Research Council
  5. Engineering and Physical Sciences Research Council [GR/T02416/01, GR/T02423/01] Funding Source: researchfish

向作者/读者索取更多资源

Experiments are conducted to study the planing and skipping of a rectangular paddle on the surface of a shallow stream. The paddle is allowed to move freely up and down by attaching it to a pivoted arm. A steady planing state, in which the lift force from the water balances the weight on the paddle, is found to be stable for small stream velocities but to become unstable above a certain threshold velocity which depends upon the weight and the angle of attack. Above this threshold, the paddle oscillates in the water and can take off into a continual bouncing, or skipping, motion, with a well-defined amplitude and frequency. The transition is sometimes bistable so that both a steady planing state and a regular skipping state are possible for the same experimental parameters. Shallow-water theory is used to construct simple models that explain the qualitative features of the planing and skipping states in the experiments. It is found that a simple parameterisation of the lift force on the paddle proportional to the depth of entry is not sufficient to explain the observations, and it is concluded that the rise of water ahead of the paddle, in particular the way this varies over time, is responsible for causing the planing state to become unstable and for enabling a continual skipping state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据