4.7 Article

Turbulence structure and interaction with steep breaking waves

期刊

JOURNAL OF FLUID MECHANICS
卷 674, 期 -, 页码 522-577

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2011.3

关键词

air/sea interactions; coastal engineering; wave breaking

资金

  1. CSIRO
  2. Australian Commonwealth Government

向作者/读者索取更多资源

Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the 'weak plunger' breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling-upwelling patterns developing at the head and tail of each breaker are shown to generate both negative-and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air-liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据