4.7 Article

Rheology of a suspension of elastic particles in a viscous shear flow

期刊

JOURNAL OF FLUID MECHANICS
卷 687, 期 -, 页码 209-237

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2011.347

关键词

particle/fluid flow; rheology; viscoelasticity

资金

  1. Nano/Bio Interface Center at the University of Pennsylvania through the NSF NSEC [DMR-045780]
  2. National Science Foundation (NSF) [CMMI-0969570]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [0969570] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this paper we consider a suspension of elastic solid particles in a viscous liquid. The particles are assumed to be neo-Hookean and can undergo finite elastic deformations. A polarization technique, originally developed for analogous problems in linear elasticity, is used to establish a theory for describing the finite-strain, time-dependent response of an ellipsoidal elastic particle in a viscous fluid flow under Stokes flow conditions. A set of coupled, nonlinear, first-order ODEs is obtained for the evolution of the uniform stress fields in the particle, as well as for the shape and orientation of the particle, which can in turn be used to characterize the rheology of a dilute suspension of elastic particles in a shear flow. When applied to a suspension of cylindrical particles with initially circular cross-section, the theory confirms the existence of steady-state solutions, which can be given simple analytical expressions. The two-dimensional, steady-state solutions for the particle shape and orientation, as well as for the effective viscosity and normal stress differences in the suspension, are in excellent agreement with direct numerical simulations of multiple-particle dispersions in a shear flow obtained by using an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) solver. The corresponding solutions for the evolution of the microstructure and the rheological properties of suspensions of initially spherical (three-dimensional) particles in a simple shear flow are also obtained, and compared with the results of Roscoe (J. Fluid Mech., vol. 28, 1967, pp. 273-293) in the steady-state regime. Interestingly, the results show that sufficiently soft elastic particles can be used to reduce the effective viscosity of the suspension (relative to that of the pure fluid).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据