4.7 Article

Sloshing and slamming oscillations in a collapsible channel flow

期刊

JOURNAL OF FLUID MECHANICS
卷 662, 期 -, 页码 288-319

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112010003277

关键词

flow-vessel interactions

资金

  1. BBSRC
  2. EPSRC
  3. Leverhulme Trust

向作者/读者索取更多资源

We consider laminar high-Reynolds-number flow through a finite-length planar channel, where a portion of one wall is replaced by a thin massless elastic membrane that is held under longitudinal tension T and subject to a linear external pressure distribution. The flow is driven by a fixed pressure drop along the full length of the channel. We investigate the global stability of two-dimensional Poiseuille flow using a method of matched local eigenfunction expansions, which is compared to direct numerical simulations. We trace the neutral stability curve of the primary oscillatory instability of the system, illustrating a transition from high-frequency 'sloshing' oscillations at high T to vigorous 'slamming' motion at low T. Small-amplitude sloshing at high T can be captured using a low-order eigenmode truncation involving four surface-based modes in the compliant segment of the channel coupled to Womersley flow in the rigid segments. At lower tensions, we show that hydrodynamic modes increasingly contribute to the global instability, and we demonstrate a change in the mechanism of energy transfer from the mean flow, with viscous effects being destabilizing. Simulations of finite-amplitude oscillations at low T reveal a generic slamming motion, in which the flexible membrane is drawn close to the opposite rigid wall before recovering rapidly. A simple model is used to demonstrate how fluid inertia in the downstream rigid channel segment, coupled to membrane curvature downstream of the moving constriction, together control slamming dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据