4.7 Article

Development of coherent structures in concentrated suspensions of swimming model micro-organisms

期刊

JOURNAL OF FLUID MECHANICS
卷 615, 期 -, 页码 401-431

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008003807

关键词

-

资金

  1. Japan Society for the Promotion of Science

向作者/读者索取更多资源

A swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity and referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre, and the effects of inertia and Brownian motion are neglected. The well-known Stokesian dynamics method is modified in order to simulate squirmer motions in a concentrated suspension. The movement of 216 identical squirmers in a concentrated suspension without any imposed flow is simulated in a cubic domain with periodic boundary conditions, and the coherent structures within the suspension are investigated. The results show that (a) a weak aggregation of cells appears as a result of the hydrodynamic interaction between cells; (b) the cells generate collective motions by the hydrodynamic interaction between themselves; and (c) the range and duration of the collective motions depend on the volume fraction and the squirmers' stresslet strengths. These tendencies show good qualitative agreement with previous experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据