4.7 Article

Swinging and tumbling of elastic capsules in shear flow

期刊

JOURNAL OF FLUID MECHANICS
卷 605, 期 -, 页码 207-226

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008001493

关键词

-

向作者/读者索取更多资源

The deformation of an elastic micro-capsule in an infinite shear flow is studied numerically using a spectral method. The shape of the capsule and the hydrodynamic flow field are expanded into smooth basis functions. Analytic expressions for the derivative of the basis functions permit the evaluation of elastic and hydrodynamic stresses and bending forces at specified grid points in the membrane. Compared to methods employing a triangulation scheme, this method has the advantage that the resulting capsule shapes are automatically smooth, and few modes are needed to describe the deformation accurately. Computations are performed for capsules with both spherical and ellipsoidal unstressed reference shape. Results for small deformations of initially spherical capsules coincide with analytic predictions. For initially ellipsoidal capsules, recent approximate theories predict stable oscillations of the tank-treading inclination angle, and a transition to tumbling at low shear rate. Both phenomena have also been observed experimentally. Using our numerical approach we can reproduce both the oscillations and the transition to tumbling. The full phase diagram for varying shear rate and viscosity ratio is explored. While the numerically obtained phase diagram qualitatively agrees with the theory, intermittent behaviour could not be observed within our simulation time. Our results suggest that initial tumbling motion is only transient in this region of the phase diagram.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据