4.7 Article

An experimental investigation of mixing mechanisms in shock-accelerated flow

期刊

JOURNAL OF FLUID MECHANICS
卷 611, 期 -, 页码 131-150

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112008002723

关键词

-

向作者/读者索取更多资源

An experimental investigation of mixing mechanisms in a shock-Induced instability flow is described. We obtain quantitative two-dimensional maps of the heavy-gas (SF6) concentration using planar laser-induced fluorescence for the case of a shock-accelerated cylinder of heavy gas in air. The instantaneous scalar dissipation rate, or mixing rate. X, is estimated experimentally for the first time in this type of flow, and used to identify the regions of most intense post-shock mixing and examine the underlying mechanisms. We observe instability growth in certain regions of the flow beginning at intermediate times. The mixing rate results show that while these unstable regions play a significant role in the mixing process, a large amount of mixing also occurs by mechanisms directly associated with the primary instability, including gradient intensification via the large-scale strain field in a particular non-turbulent region of the flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据