4.7 Article

Rough Terrain Mapping and Classification for Foothold Selection in a Walking Robot

期刊

JOURNAL OF FIELD ROBOTICS
卷 28, 期 4, 页码 497-528

出版社

WILEY
DOI: 10.1002/rob.20397

关键词

-

类别

资金

  1. Ministry of Science and Higher Education [N514 294635]
  2. European Union [8.2.2]

向作者/读者索取更多资源

Although legged locomotion over a moderately rugged terrain can be accomplished by employing simple reactions to the ground contact information, a more effective approach, which allows predictively avoiding obstacles, requires a model of the environment and a control algorithm that takes this model into account when planning footsteps and leg movements. This article addresses the issues of terrain perception and modeling and foothold selection in a walking robot. An integrated system is presented that allows a legged robot to traverse previously unseen, uneven terrain using only onboard perception, provided that a reasonable general path is known. An efficient method for real-time building of a local elevation map from sparse two-dimensional (2D) range measurements of a miniature 2D laser scanner is described. The terrain mapping module supports a foothold selection algorithm, which employs unsupervised learning to create an adaptive decision surface. The robot can learn from realistic simulations; therefore no a priori expert-given rules or parameters are used. The usefulness of our approach is demonstrated in experiments with the six-legged robot Messor. We discuss the lessons learned in field tests and the modifications to our system that turned out to be essential for successful operation under real-world conditions. (C) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据