4.3 Article

Dynamic Distribution of Spindlin in Nucleoli, Nucleoplasm and Spindle From Primary Oocytes to Mature Eggs and its Critical Function for Oocyte-to-Embryo Transition in Gibel Carp

出版社

WILEY
DOI: 10.1002/jez.618

关键词

-

类别

资金

  1. National Key Basic Research Program [2010CB126301]
  2. National Natural Science Foundation of China [30630050]
  3. National Technology System for Conventional Freshwater Fish Industries, Open Project of State Key Laboratory of Freshwater Ecology and Biotechnology [2008FB007]
  4. Open Project of State Key Laboratory of Freshwater Ecology and Biotechnology [075A011301, 085A021301]

向作者/读者索取更多资源

Spindlin (Spin) was thought as a maternal-effect factor associated with meiotic spindle. Its role for the oocyte-to-embryo transition was suggested in mouse, but its direct evidence for the function had been not obtained in other vertebrates. In this study, we used the CagSpin-specific antibody to investigate CagSpin expression pattern and distribution during oogenesis of gibel carp (Carassius auratus gibelio). First, the oocyte-specific expression pattern and dynamic distribution was revealed in nucleoli, nucleoplasm, and spindle from primary oocytes to mature eggs by immunofluorescence localization. In primary oocytes and growth stage oocytes, CagSpin accumulates in nucleoli in increasing numbers along with the oocyte growth, and its disassembly occurs in vitellogenic oocytes, which implicates that CagSpin may be a major component of a large number of nucleoli in fish growth oocytes. Then, co-localization of CagSpin and beta-tubulin was revealed in meiotic spindle of mature egg, indicating that CagSpin is one spindle-associated factor. Moreover, microinjection of CagSpin-specific antibody into the fertilized eggs blocked the first cleavage, and found that the CagSpin depletion resulted in spindle assembly disturbance. Thereby, our study provided the first direct evidence for the critical oocyte-to-embryo transition function of Spin in vertebrates, and confirmed that Spin is one important maternal-effect factor that participates in oocyte growth, oocyte maturation, and oocyte-to-embryo transition. J. Exp. Zool. 313A:461-473, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据