4.7 Article

ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 209, 期 4, 页码 807-817

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20111202

关键词

-

资金

  1. National Heart, Lung, and Blood Institute [K25HL098807]
  2. National Institute of Allergy and Infectious Diseases [R01AI025032, HHSN272200700038C]
  3. National Institute of General Medical Sciences [PM50GMO76547]
  4. National Cancer Institute [R03CA156667]

向作者/读者索取更多资源

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. We demonstrate that macrophage lipid body formation can be induced by modified lipoproteins or by inflammatory Toll-like receptor agonists. We used an unbiased approach to study the overlap in these pathways to identify regulators that control foam cell formation and atherogenesis. An analysis method integrating epigenomic and transcriptomic datasets with a transcription factor (TF) binding site prediction algorithm suggested that the TF ATF3 may regulate macrophage foam cell formation. Indeed, we found that deletion of this TF results in increased lipid body accumulation, and that ATF3 directly regulates transcription of the gene encoding cholesterol 25-hydroxylase. We further showed that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell formation. Finally, deletion of ATF3 in Apoe(-/-) mice led to in vivo increases in foam cell formation, aortic 25-HC levels, and disease progression. These results define a previously unknown role for ATF3 in controlling macrophage lipid metabolism and demonstrate that ATF3 is a key intersection point for lipid metabolic and inflammatory pathways in these cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据