4.7 Article

Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 208, 期 10, 页码 2069-2081

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20102683

关键词

-

资金

  1. National Institutes of Health [R01AI078273]

向作者/读者索取更多资源

Dysregulated CD4(+) T cell responses and alterations in T regulatory cells (T(reg) cells) play a critical role in autoimmune diseases, including inflammatory bowel disease (IBD). The current study demonstrates that removal of Bcl11b at the double-positive stage of T cell development or only in T(reg) cells causes IBD because of proinflammatory cytokine-producing CD4(+) T cells infiltrating the colon. Provision of WT T(reg) cells prevented IBD, demonstrating that alterations in T(reg) cells are responsible for the disease. Furthermore, Bcl11b-deficient T(reg) cells had reduced suppressor activity with altered gene expression profiles, including reduced expression of the genes encoding Foxp3 and IL-10, and up-regulation of genes encoding proinflammatory cytokines. Additionally, the absence of Bcl11b altered the induction of Foxp3 expression and reduced the generation of induced T(reg) cells (iT(reg) cells) after Tgf-beta treatment of conventional CD4(+) T cells. Bcl11b bound to Foxp3 and IL-10 promoters, as well as to critical conserved noncoding sequences within the Foxp3 and IL-10 loci, and mutating the Bcl11b binding site in the Foxp3 promoter reduced expression of a luciferase reporter gene. These experiments demonstrate that Bcl11b is indispensable for T(reg) suppressor function and for maintenance of optimal Foxp3 and IL-10 gene expression, as well as for the induction of Foxp3 expression in conventional CD4(+) T cells in response to Tgf-beta and generation of iT(reg) cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据