4.7 Article

Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 206, 期 8, 页码 1709-1716

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20081779

关键词

-

资金

  1. Canadian Institutes for Health Research (CIHR) [MOP-86536]
  2. William Dawson Scholar of McGill University

向作者/读者索取更多资源

Peptidoglycan-derived muramyl dipeptide (MDP) activates innate immunity via the host sensor NOD2. Although MDP is N-acetylated in most bacteria, mycobacteria and related Actinomycetes convert their MDP to an N-glycolylated form through the action of N-acetyl muramic acid hydroxylase (NamH). We used a combination of bacterial genetics and synthetic chemistry to investigate whether N-glycolylation of MDP alters NOD2-mediated immunity. Upon infecting macrophages with 12 bacteria, tumor necrosis factor (TNF). secretion was NOD2 dependent only with mycobacteria and other Actinomycetes ( Nocardia and Rhodococcus). Disruption of namH in Mycobacterium smegmatis obrogated NOD2-mediated TNF secretion, which could be restored upon gene complementation. In mouse macrophages, N-glycolyl MDP was more potent than N-acetyl MDP at activating RIP2, nuclear factor. B, c-Jun N-terminal kinase, and proinflammatory cytokine secretion. In mice challenged intraperitoneally with live or killed mycobacteria, NOD2-dependent immune responses depended on the presence of bacterial namH. Finally, N-glycolyl MDP was more efficacious than N-acetyl MDP at inducing ovalbumin-specific T cell immunity in a model of adjuvancy. Our findings indicate that N-glycolyl MDP has a greater NOD2-stimulating activity than N-acetyl MDP, consistent with the historical observation attributing exceptional immunogenic activity to the mycobacterial cell wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据