4.7 Article

Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 205, 期 9, 页码 2053-2063

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20080106

关键词

-

资金

  1. Japanese Ministry of Education, Science, Sports, and Culture, Tokyo, Japan [15256003, 16209027]

向作者/读者索取更多资源

The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several relaxing factors, such as prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). We have previously demonstrated in animals and humans that endothelium-derived hydrogen peroxide (H2O2) is an EDHF that is produced in part by endothelial NO synthase (eNOS). In this study, we show that genetic disruption of all three NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]) abolishes EDHF responses in mice. The contribution of the NOS system to EDHF-mediated responses was examined in eNOS(-/-), n/eNO(-/-), and n/i/eNOS(-/-) mice. EDHF-mediated relaxation and hyperpolarization in response to acetylcholine of mesenteric arteries were progressively reduced as the number of disrupted NOS genes increased, whereas vascular smooth muscle function was preserved. Loss of eNOS expression alone was compensated for by other NOS genes, and endothelial cell production of H2O2 and EDHF-mediated responses were completely absent in n/i/eNOS(-/-) mice, even after antihypertensive treatment with hydralazine. NOS uncoupling was not involved, as modulation of tetrahydrobiopterin (BH4) synthesis had no effect on EDHF-mediated relaxation, and the BH4/dihydrobiopterin (BH2) ratio was comparable in mesenteric arteries and the aorta. These results provide the first evidence that EDHF-mediated responses are dependent on the NOSs system in mouse mesenteric arteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据