4.7 Article

iPLA2β :: front and center in human monocyte chemotaxis to MCP-1

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 205, 期 2, 页码 347-359

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20071243

关键词

-

资金

  1. NCRR NIH HHS [M01-RR-018390, M01 RR018390] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL061971, HL 510681, HL 61971] Funding Source: Medline

向作者/读者索取更多资源

Monocyte chemoattractant protein-1 (MCP-1) directs migration of blood monocytes to inflamed tissues. Despite the central role of chemotaxis in immune responses, the regulation of chemotaxis by signal transduction pathways and their in vivo significance remain to be thoroughly deciphered. In this study, we examined the intracellular location and functions of two recently identified regulators of chemotaxis, Ca2+-independent phospholipase (iPLA(2)beta) and cytosolic phospholipase (cPLA(2)alpha), and substantiate their in vivo importance. These enzymes are cytoplasmic in unstimulated monocytes. Upon MCP-1 stimulation, iPLA(2)beta is recruited to the membrane-enriched pseudopod. In contrast, cPLA(2)alpha is recruited to the endoplasmic reticulum. Although iPLA(2)beta or cPLA(2)alpha antisense oligodeoxyribonucleotide (ODN)-treated monocytes display reduced speed, iPLA(2)beta also regulates directionality and actin polymerization. iPLA(2)beta or cPLA(2)alpha antisense ODN-treated adoptively transferred mouse monocytes display a profound defect in migration to the peritoneum in vivo. These converging observations reveal that iPLA(2)beta and cPLA(2)alpha regulate monocyte migration from different intracellular locations, with iPLA(2)beta acting as a critical regulator of the cellular compass, and identify them as potential targets for antiinflammatory strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据